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Abstract: In recent times, the adaptation of artificial Iigence (Al) technologies has been spread in tsteofeum
industry. Such methods as Atrtificial Neural Netwso(RNN), Fuzzy Logic, or Evolutionary Computing leathe potential
to improve the currently applied methods in evesgter of the industry. They provide an advancedaaahment of the
complex physics of downhole parameters, which tireadd to their modeling ability compared to thaditional
empirical and analytical methods: this study, the development of a feed-forwardraknetwork is presented. The
purpose of the development is to predict the p@sgloblems in case of a drilling operation, durimgning in and
pulling out of the hole (RIH & POOH), based on ttaa acquired during the drilling of the hole.

1 Introduction terminals and tells whether a terminal should hvaor

1.1 Artificial Neural Networks remain inactive. By doing that repeatedly acros#ipie
Neural networks are a set of algorithms modelleB€urons (the human brain has around 100 billiomares),

loosely after the human brain that is designedpfatern OUr brain can process complex things and solving

recognition. They interpret sensory data througind of ~ Problems.

machine perception, labelling, or raw clusteringuih The
pattern recognition is done on numerical data, Wwhg
contained in vectors. To make this possible, realehdata

must be translated, be it images, sound, teximer $eries.
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Figure 1 Sructure of biological neurons[1]

Each neuron (Figure 1) is a processing tool oboain.
Each neuron will try to stimulate other neuronsitgsaxon

Deep learning is the name that is used for netwitidkis
are composed of several layers (“stacked neuralarks”)
[2] (Figure 2). The layers are made of nodes, where
computation happens. The nodes are loosely patteme
the human brain's neurons, which fire when sufficie
stimuli have encountered A node, combines inpuhftioe
data with a set of coefficients, or weights, thaher
amplify or dampen that input. With this, significencan
be assigned to the input concerning the task therighm
is trying to learn, e.g., which input is the mostgul in
classifying data without error. The sum of the inpeight
products is passed through the so-called activétioction
of a node. The activation function modifies thensigto
determine whether and to what extent it should esg
further through the network to affect the outcome,, an
act of classification. If the signals pass througbk,neuron
has been “activated” (Figure 3).
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Figure 2 Modd of a neural network [3]
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Inputs  Weights Netinput  Weiivation The input parameters which are given to the neural
function function network to process are called features. The nodes &
weight for each feature and a bias term as we#.Wights
and the bias term together make up the regression
output parameters. These regression parameters are tbegdda
an activation function, which decides whether tmult is
significant enough to “fire” the node, producing tutput.
The first step of training is to give an initiallva for each
Figure 3 Working model of a node [4] regression parameter. It is very likely to perfopworly
with these random initial values, but the trainingl
A node layer is a row of those neuron-like switctes  essentially punish the network for poor performance
turn on or off as the input is fed through the rigdach After the first guess of the network (output cadtet with
output of a layer is simultaneously the input ot ththe initial weights), the decision to make is hawrtodify
subsequent layer, starting from an initial inpuyela the weights to reach a better result. In ordeiotths, first,

receiving the data. the level of error needs to be measured. Thisne thy the
application of a so-called loss function, whichigades the
1.1.1  Working mechanics of neural networks severity of error for the current parameters. Assallt, the

At the highest and simplest representation, a sigget actual goal is to find the minimum of the loss fuoc
neural network can be presented as a black boxtwith (Figure 6). The way how this minimum is reachedhis
methods, learn and predict, as follows (Figure 4). question of the optimization method, but to apply af

them, the gradient of the error is needed at thengpoint

Wit e Inre o Siitsats corresponding to actual regre_:ssion parameters.(Bgmse
— Upclates ¢ the chosen method, a step is calculated (1), whidih
Internal state improve the result.
using Whew = Woiq T Step 1)
Inputs Internal state Outputs
e—ly- - predict from (inputs) ——— -

Figure 4 Neural network as a black box

The “learning” process takes the inputs and thaatks
outputs and updates its internal state accordirgglythe
calculated output gets as close as possible tadbmed
output. The “predict” process takes an input antbgates,
using the internal state, the most likely outputoading to
its past “training experience”. That is the reasuamy
machine learning is sometimes called model fittifige
training procedure of a feed-forward neural netwizrk
presented in detail in the following flowchart (Erg 5):

Figure 6: Finding minimum of loss function L(w)

Backpropagation is the learning mechanism of aaleur
network. It can be considered as the messengechwiis
Jessatstes  the network whether a mistake was made or not guhie

prediction. The development of backpropagation ores
of the most important milestones in the field difeial
neural networks.

During prediction, a signal is propagated throulg t
Gradietitfoball laers. ' Gradiant for 165t leve nodes of the artificial neural network to the outfayer,

~ Actual outgﬁts

[ ¢ - where the “decision is made”. After the generatbrthe
k M : : H output, its error is propagated back through thevosk in
‘ b such a way, that the parameters of the networkbgan
altered accordingly.
function During the backpropagation process, the derivafives

Figure 5 Training procedure of feedforward neural networks the different parameters in the network are detaedhi
which is needed for the optimization. So backprapiag
is the prerequisite of optimization.

~ 72 ~

Copyright © Acta Tecnologia, www.actatecnologia.eu



Acta Tecnologia - International Scientific Journal about Technologies
Volume: 7 2021 Issue: 3 Pages: 71-77 1SSN 2453-675X

PROBLEM PREDICTION DURING TRIP IN AND TRIP OUT PROCEDURES WITH ARTIFICIAL NEURAL
NETWORKS
Adam Viktor Pasztor; Richard Urmés

1.1.2 Configuration parameters of ANNs Feature standardization
There are several configuration parameters that ttee ~ With feature standardization, the values of eaahuie
be set for a feedforward network to ensure sucakssfn the data will have zero-mean (when subtractiegiean

results. in the numerator) and unit-variance. This methadidely
used for normalization in many machine learning
Activation functions algorithms (mostly those that involve distance-base

The activation function is analogous to the buiided = methods). The general method of calculation isitdract
electrical potential in biological neurons, which“fired” the mean of each feature from the actual valuedaride
when the so-called activation potential is reachBus the result by the standard deviation of the giveature.
behaviour is mimicked by the artificial neural netkwwith
the application of probability. So a neural netwatithout 1.2 Application of ANNsin drilling problems
any activation function is actually a linear regies prediction
mOdel, which is limited in the set of functions dan It is dr"hng a well that accounts for most of the
approximate. The selection of the activation fumetcan jnvestments in the oil and gas industry. Thuss itrucial
greatly alter how the firing occurs in the netwollhe to avoid any complications, accidents during the

activation function should do two things: construction of a well. Predicting these problernme
*  ensure non-linearity, time ahead they would occur may save a lot of mamely
» ensure that gradients remain large through theshiddreduce non-productive time substantially, as ibwad a

unit. proactive reaction rather than remediating the wecu

problem, which is more than often not successflie T
To perform backpropagation on the network, th@revailing trend in the century is using ANNSs te@gict
activation function is required to be differentiapso the such problems. Borozdin et al. [7] summarized thiéirdy
gradients of error (loss) can be calculated witpeet to problems and assigned a value to them based on the
the weight,s which are then updated using gradiestent. possibility of using a neural network to predictrin
Most of the drilling problems that occur duringliitng
Loss functions are stuck pipe, lost circulation, and gas, wateojldkicks.
Several functions can be used to estimate the efi@r Thus, this work focuses on these problems regarttiag
set of weights in a neural network. However, a fiomc applicability of ANNSs.
where the space of candidate solutions maps csitwath In this decade, several works were devoted to
(but high-dimensional) landscape, on which th@redicting stuck pipes. Ferreira et al. [8] develbmn
optimization algorithm can reasonably navigate viautomated decision support algorithm to avoid idgll

iterative updates to the model weights, is pretef&. operations. This earlier work compared real-timiz atith
historical data and required an engineer to déectases
Optimization methods when action needed to be taken. Naraghi et algeil an

During the training of the artificial neural netwothe active learning method (ALM) to predict the probipiof
goal is to decrease the loss with each epoch. cenisbe the drillstring being stuck using the surface medate
achieved by finding the minimum of the loss funetiwith  parameters of 150 drilled wells. Salminen et aD][1
the optimization of the weights in the network. dchieve developed a model that compared the real-time wika

this, different optimization methods can be utilize the expected trends calculated using torque and dra
software and trend analysis. This way, they wete &b
Initialization methods predict stuck pipe events with sufficient time ahda
The initialization of network weights is an imparta prevent them.
and often overlooked characteristic of developiegral Murillo et al. [11] used adaptive fuzzy logic antiNs

networks. Poor initialization of network weightsidae the to predict stuck pipe incidents. One hundred eidivey
source of many issues which can deteriorate thiata sets were generated from drilling and mudrteploat
performance. Because of the inherent way the gmadieconsisted of the measured and vertical depths, GPM,
updates are calculated, a model initialized witleatoes WOB, RPM, BS, drillcollar length, ROP, torque arrdg
would learn nothing, as the weights would stay esro chloride filtrate, PV, YP, MW, and gel strength. femluce

the number of variables, dimensionless groups were
Feature normalization introduced. Discriminant analysis was used to pcedu

Feature normalization involves normalizing featurediscriminant functions as output curves. 75% of da¢a

before applying the learning algorithm. This is tha&vas used to train the ANN, while 25% was used sbite
rescaling of the feature generally done during thegsing the ANN introduced less error in predictirig t
preprocessing. According to loffe and Szegedy [6hccurrence of the sticking than the fuzzy logic elod
gradient descent converges much faster with feature Jahanbakshi et al. [12] used a dataset of 214 sampl
scaling than without it. that were divided into a 70:30 ratio randomly @irirand

test their ANN. The data included mud propertieslAB

~ 73 ~

Copyright © Acta Tecnologia, www.actatecnologia.eu



- International Scientific Journal about Technologies
Volume: 7 2021 Issue: 3 Pages: 71-77

Acta Tecnologia
ISSN 2453-675X

PROBLEM PREDICTION DURING TRIP IN AND TRIP OUT PROCEDURES WITH ARTIFICIAL NEURAL
NETWORKS
Adam Viktor Pasztor; Richard Urmés

length, seconds the pipe was still, and differai¢ Isizes.

In their work, a feed-forward backpropagation modabk
used with one hidden layer. After optimization,whs

All these sticking mechanisms have their early wayn
signs. This can be avoided or successfully mit@jafe do
so, the drilling and formation parameters must lbsety

found that the ANN provided the best results witle t monitored. As there is a connection between thadtion

transit transfer function and 18 neurons in thel@idiayer.

The ANN showed 82.15% accuracy in predicting stigki can be used to approximate the formation parameters
Several authors worked hard to develop mathematical

cases.

and the surface mechanical drilling parameterslatter

Alshaikh et al. [13] compared three machine learninmodels to describe the drilled formations basedtten
models to predict stuck pipe, namely decision freesurface drilling parameters with limited succeshisTis
support vector machines, and ANNs. In their work, ahere the power of the ANNs proves very useful.

dataset of 9 historical stuck pipe occurrencesusas. The

parameters contained were the surface drillingmaters,
their average of the previous 12 timesteps, andateeof
change of the given parameter. The output was
probability of being stuck. According to their résu
which were validated using nested cross-validatibe,

The aim of this section is to develop a feed-fodvar
artificial neural network that can recognize catipoints
of an open-hole section, where some kind of stigpkimay

tleecur during tripping in and out of the hole. Theural

network should also be able to provide an earlyniagr
sign to prolong the time window for any reactiomiake.

ANN was 96.88% accurate in predicting stuck pipdo develop the network, the surface mechanicalirdyil

incidents with a precision of 94.28%, which medrat tn

parameters are used exclusively which can be nmeitat

6 out of 100 cases, there was a false alarm. all times at the rig site:

*  Measured depth (MD)

2 Methods +  Rate of penetration (ROP),
There are multiple reasons to pull the drillstrmg of +  Weight on bit (WOB),

the hole and to run a new assembly, namely: *  Revolution per Minute (RPM),

» reaching the total planned depth, *  Flow rate (FR),

e changing BHA (running new rotary assemblygs
changing malfunctioning downhole tools, bits called
bittrip or roundtrip), .

* hole conditioning before cementing and open-hole
geophysical measurements (it involves pulling dut a
the hole and running in again, then circulating jnud

Torque (TQ),

Standpipe pressure (SPP),

Mud weight in and out (MW),

Mud temperature in and out (TMP),
Total gas content (TGAS).

Using these surface drilling parameters, the aiaifi
neural network is trained and tested on the daSdvilled
downhole problems that can be traced back to theittion \yells. 65% of the data is used to train and 354sid to
of the well, mud, and mudcake as well as the veslhgetry test the neural network. As a result, the ANN W@l able
and well stability. The most common issue is theepi to point out critical points along the trajectorfytioe well,
becom|ng stuck in the well. The St|Ck|ng mecharusmhere the stuck p|pe may occur during tnpp'ngnd aut,

include the following: . ~ also providing an early warning sign for the drilie react
* Loose or unconsolidated formations collapsing intggster.

the borehole and packing off the drillstring.
- Differential sticking due to high-pressure diffecen 2.1  Development environment
and/or thick mudcake. The presented development is done in Java language,
*  Mobile formations behaving in a plastic mannerwith the use of the deeplearning4j library. When
squeezing into the wellbore. considering large-scale server-side applicaticng & the

Tripping in and out of the hole may pose sevesksi

* Reactive formations swelling into the wellbore.
»  Drillstring vibration causing caving that packs tfé
drillstring.

most favored, the deeplearning4j library make®gsible
to develop artificial neural networks in Java orirtgoort
(even retrain) models from Pytorch, TensorflowKeras

e Keyseating occurs when the rotating drillpipe wearand deploy them in JVM Microservice environments,
a groove into the borehole wall making trippindgted  mobile devices, 10T, and Apache Spark.
larger diameter tools out of the hole challenging.
»  Under-gauge holes develop when the bit starts ©2 ANN development
wear. Running a new bit poses the risk of jamming i During the development process of the neural
the under gauge section. networks, an iterative approach was applied, which
*  Hole cleaning problems preventing the removal dhcluded the generation and the training of several
cuttings from the borehole, packing off the drillsfj.  networks with a static, common base configuratiod a
changing “case” configuration. The changing
configuration contained the number of hidden layérs
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,3), the overall number of hidden neurons (12 & the
number of training epoch (200, 400, 600, 800),sike of
data batches(30, 50, 100, 250, 500), the learraitey(de-
4, 5e-4, 1e-3, 5e-3) and weight decay (1e-7, 3&-8, Se-
6, 1e-5, 5e-5, le-4) applied for the optimizatiandtion.
This resulted in 3360 models for both trip-out ariokin

procedures.

The applied activation function was RelLU in theso-

hidden layers, sigmoid in the output layer, andenplic
tangent in the input layer.

which performs well in most applications, as it ialgoand

2.3 Mode evaluation

During the training process, only the first weltlata

was used, as it had the most problems duringithentand
trip out processes. The data of the two other welse
used as a validation check to give feedback oneliva
network can be utilized for new wells.

For the evaluation of the generated and trainedetspd
called confusion matrices were used. Each rotthen

matrix represents the instances in an actual ala#s each

column represents the instances in a predicted (fFgure
RelLU is the simplest non-linear activation function7):

rectifies the vanishing gradient problem. Mosthef teep

learning models use ReLU nowadays. However, RelL Predicted Positive Predicted Negative
should only be used within hidden layers of a neur:

network. For the output layer, the activation fimect Actual True Positive (TP) | False Negative (FIN)
should be sigmoid for binary classification, hypsid Positive

:gggr:]eegstiofr?rp rg};:lélf;llass classification, and linear fa ; :gf;m False Positive (FP) | True Negative (TN)

The zero-centeredness issue of the sigmoid functis

can be resolved by using the hyperbolic tangerttfon.
Because of this, the hyperbolic tangent functioaligays
preferred to the sigmoid function within hidden dag.
However, the hyperbolic tangent still suffers frtira other
problems plaguing the sigmoid function, such as the
vanishing gradient problem.

Sigmoids suffer from the vanishing gradient problem
They are not zero-centered; gradient updates géatdo
different directions, making optimization more ditfit.
Sigmoids saturate and kill gradients and also raow
convergence. Sigmoids are still used as outputtitume
for binary classification but are generally not disgéthin
hidden layers. A multidimensional version of thensoid
is known as the softmax function and is used foltiohass
classification.

The applied loss function was mean square%e
logarithmic error. The adaptive moment estimati@thnd
was applied as the optimization method. Adaptiveridot
Estimation (Adam) [14] is a method that computes
adaptive learning rates for each parameter. Intiaddio
storing an exponentially decaying average of pasaed
gradients. Adam also keeps an exponentially degayin
average of past gradients similar to momentum. \&deer
momentum can be seen as a ball running down a,slope
Adam behaves like a heavy ball with friction, whitlus
prefers flat minima in the error surface.

The applied initialization method was the Xavier
method, which is a simple heuristic for assigniegarork
weights. With each passing layer, the variance Ishou
remain the same. This keeps the signal from exptpth
high values or vanishing to zero. So the weightaikhbe
initialized in such a way that the variance remdgssame
for both the input and the output. The weights gravn
from a distribution with zero mean and a speciéicance.

The normalization and standardization are doneheay t
default data initialization module of deeplearing4j

Figure 7 Confusion matrix

With the parameters of the confusion matrix the

following indicators (2), (3), (4), (5) are calcted:

TP
TP+ FN
TP

Precision =

Recall =

2
3
(4)
©)

The F1 score is the harmonic mean of precision and

TP + FP
2TP
2TP + FP+ FN
TP+TN

A =
CCUracy =Tp Y TN + FP + FN

F1 score =

nsitivity.

The evaluation process consisted of the following

steps:

1. Eliminate the models which gave a worse than 0.5
value for any of the indicator parameters on the
training dataset.

Search for the models which resulted in the best
indicator parameter values on the training dataset.
Search for the models which resulted in the best
indicator parameter values for the validation
datasets.

Eliminate models, where overfitting is indicated
(indicator parameters have high values in case of
training dataset and low values in case of training
dataset).

For each generated model calculate the ratio of the
calculated and best values for each indicator
parameter.

Select the model with the best calculated / best
ratio values.

2.

3.

4,
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Unfortunately, the amount of data for the third el The best model for the trip-in procedure is sumpnegti
case of build-in problems was not sufficient fore thin Table 2. As it was stated before, in the casi®fthird
evaluation. well, there were not enough positive occurrencesalvis

fortunate from the perspective of the drilling pedare) for
3 Results the evaluation. The presented model provided thet be

The best model for the trip-out procedure igverage ratio values for both the training anddaion
summarized in Table 1. The high ratio values incege of datasets. Unfortunately, the actual values are low
the two validation datasets suggest, that the mgae¢ especially in the case of the precision and Flesawhich
exceptionally good results compared to all the thuilmeans that the model overpredicted the numbersifipe
models. On top of that, the actual values are hlgh occurrences for the validation set. The reasothfsrcould
(averaging above 0.8), which means, that the mod_@? the relatively low occurrence of failure durthg buﬁld-
performs well outside of the training dataset. Th# procedures of the second well. The batch size, t
somewhat low recall ratio in the case of the trajrdataset learning rate, and the weight decay are all onehef
is because of an overfitted model, which resultealiiecall €xtreme values, which indicates, that the optimatieh
value of 1 for the training set but very low valdesthe ~Was not found.
validation sets. The network has the highest hiddger

number and hidden neuron number among the provided Table 2 Best model for trip-in procedure
options, which indicates high nonlinearity betwetbe Trip out procedure
input and output parameters. Both the batch sizketlaa Laver number 2
epoch number are just the second highest withigitren Hic‘iden N 6
range. This is an indication of the optimal setepause Evoch 600
. . - L pochs
neither the increase nor the decreasing of traioyietes or -
training batches would improve the performance hef t BatCh_S'Ze 30
model. Learning rate 5.E-03
Weight decay 1.E-04
Table 1 Best modd for trip-out procedure Training Dataset
Trip out procedure Indicator Actual | Ratio
Layer number 3 Accuracy 0.9739| 0.993066
Hidden neurons 5 Precision 0.931 0.931
Epochs 600 Recall 0,8882 1
Batch Size 250 F1 Score 0.9091] 0977948
Learning rate 1.E-03 Nahbilon Dtaset
WielAl iy — -l Indicator Actual | Ratio
o Mrameng Dataset o Accuracy 0,6945| 0.729364
Indicator | Actml | Rafh Precision 0,1047] 0985876
precision | 05579 0 sosu =
Recall 07253 07253 Fl Seoke i 2
F1 Score 0,786 0941881 4  Conclusion
,F E VARB Dt . The presented results show that the described
Indicator Actual | Ratio methodology is sufficient to develop such neuravoeks
Accuracy 0.8502| 0.580312 which can predict the possible problems duringttipein
Precision 0.8147| 0.895886 and trip-out procedure at an acceptable level.
Recall 0.8293] 0,7253 The indicator parameters reached high values in the
F1 Score 0.8219| 0,941881 case of both procedures considering the trainingsea
Second Validation Dataset The significance of this result lies in the fachatttthe
TaiEeator Acwl | Raks driIIir)g proce_dure consists of a series of buildaimd out
fy— 0.9122| 0.939463 sessions. Wlth.every session, the accuracy of aaheu
e network can be improved, so each session will feg Hzan
Precision 0.908| 0.909606 .
the previous.
Recall 06781] 0.78921 With the evaluation of the validation dataset, the
F1 Score 0.7764 1 applicability of a pre-trained model is tested. Fuw trip-

out procedure, the results were really promisirgg t
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indicator parameters showed accuracy levels wayeabo

the acceptable level.
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